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ABSTRACT: In this paper, we derive time domain expressions of band limited signal pulses used to obtain 

zero inter symbol interference (ISI) for digital communication. Although time domain expressions of raised 

cosine (RC) and square root raised cosine (SRRC) pulses have been reported in many Electrical 

Engineering books on Digital Communications but however, their closed forms have not been computed. 

We thus, make use of Fourier transform properties along with its tables in a sensible way to derive these 

expressions in time domain. We consider only four band limited pulses in frequency domain which are 

rectangular, triangular, raised cosine and square root raised cosine. We start with the Fourier transform pair 

of unit step function and compute the time domain expression of rectangular band limited pulse using time 

shift and linearity properties of Fourier transform. Then, we make use of auto correlation / convolution 

property of Fourier transform to obtain time domain expression of triangular band limited pulse. Finally, 

we compute the time domain expressions of (RC) and (SRRC) band limited pulses using linearity, 

differentiation and even properties of Fourier transform.  
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1 INTRODUCTION 

Due to infinite absolute bandwidth of multilevel pulses and 

their improper filtration through a communication system, 

spreading takes place in time domain which causes the 

pulses corresponding to each symbol to smear into adjacent 

time slots and results into inter symbol interference (ISI)  

[1]-[2]. Restriction on the bandwidth of the pulses is needed 

so that pulses could have rounded tops instead of flat ones in 

order to avoid ISI. Due to two significant problems present 

in the overall amplitude transfer characteristic of the signal 

pulse that causes ISI; i) flat spectrum over the range of 

frequencies, |f| < B and zero elsewhere which results into 

physically unrealizable impulse response of the system, ii) 

the synchronization of the clock in the decoding sampling 

circuit needs to be almost perfect which results into ISI due 

to inaccurate synchronization [3] – [5].  

Because of these difficulties, we are forced to include other 

signal pulse shapes that have a slightly different bandwidth. 

The basic idea is to find pulse shapes that pass through zero 

at adjacent sampling points and yet to have an envelope that 

decays much faster than 1/t so that clock jitter in the 

sampling times does not cause appreciable ISI. Plots of the 

frequency responses and their corresponding impulse 

responses of raised cosine (RC) and square root raised cosine 

(SRRC) pulses for various roll off factors, β are sketched in 

section 6 of this paper. It is seen from these graphs that as 

the absolute bandwidth of the pulse is increased, the filtering 

and clock timing requirements are relaxed a little bit since 

the envelope of the impulse response decays as 1/t
3
 which is 

faster than that of the order 1/t for large values of t. The baud 

rate of these pulses is dependent on the rolloff factor, β and 

absolute bandwidth of the system which was not the case 

with either rectangular or triangular shape signal pulse [1 –

5]. 

In this paper, we thus, compute time domain expressions / 

closed forms of band limited signal pulses using Fourier 

transform properties sensibly. We consider four types of 

signal pulses in the paper which are of rectangular, 

triangular, raised cosine and square root raised cosine 

shapes. Time domain expressions of raised cosine and square 

root raised cosine shape pulses have been reported in many 

books on digital communications for elimination of inter 

symbol interference (ISI) without their derivation.   

This paper is organized as follows: Section 2 describes the 

computation of time domain expression of rectangular shape 

pulse using Fourier transform pair of unit step function, 

duality, time shift and linearity properties of Fourier 

transform. Computation of time domain expression of 

triangular shape pulse is done in section 3. Section 4 and 5 

describes the detailed procedure of computing time domain 

expressions of raised cosine and square root raised cosine 

shape pulses. We provide the sketch of these pulses and their 

time domain expressions in section 5. Finally, we present 

our conclusions in section 6.     

2 COMPUTATION OF TIME DOMAIN EXPRESSION 

OF RECTANGULAR SHAPE SIGNAL PULSE 

 

Rectangular shaped signal pulse, r(f) as per [6] – [8] is 

defined as; it is equal to T for |f| ≤ 0.5τ and zero otherwise. 

Shifted form of unit step functions permit us to express this 

pulse as, r(f) = T x{u(f + 0.5τ) – u(f – 0.5τ). We know from 

Fourier transform tables given in [9] – [12] that u(t) ↔ 

(j2πf)
-1

 + 0.5δ(f) and time reversal property of Fourier 

transform immediately allows us to write u(-t) ↔ (-j2πf)
-1

 + 

0.5δ(f), where we have used the even property of Dirac delta 

function. Now, duality property of Fourier transform is 

utilized to express the inverse Fourier transform of u(f) as (-

j2πt)
-1

 + 0.5δ(t) ↔ u(f).  If X(f) denote the Fourier transform 

of x(t), then x(t)exp(±j2πf0t) denote the Fourier transform of 

 0X f f using frequency translation property. We apply 

this property along with linearity of Fourier transform and 

compute time domain expression of r(f) as, 
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Equation (1) has been derived in various books of Signals 

and Systems using either the definition of Fourier Transform 

or its differentiation property. But, in this case, it has been 

derived with a different approach. 

3 COMPUTATION OF TIME DOMAIN EXPRESSION 
OF TRIANGULAR SHAPE SIGNAL PULSE 

Triangular shaped signal pulse, Δ(f) as per [6] – [8] is 

defined as; it is equal to T (1 ± |f| / τ) for |f| ≤ τ and zero 

otherwise. We realize that Δ(f) can easily be generated by 

performing either autocorrelation or convolution of r(f) with 

itself. Final result of both operations are equivalent due to 

even nature of the pulse r(f). Thus, for f ≥ 0, we may 

compute the result of autocorrelation of r(f) using its 

definition as 
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As Autocorrelation is an even function of time and 

frequency, we immediately realize that it is equal to (τ +f) 

for –τ ≤ f < 0. In order to scale down its maximum amplitude 

equal to unity at f = 0, we need to multiply the above 

operation with τ
-1

. Thus, we develop the relationship 

between the two band limited pulses as, 
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Equation (2) has been derived by utilizing the convolution 

property of Fourier transform which maps to multiplication 

property. This equation has also been derived in various 

books of Signals and Systems using either the definition of 

Fourier transform or its differentiation property. But, it has 

been obtained using a different approach.     

4 COMPUTATION OF TIME DOMAIN EXPRESSION 
OF RAISED COSINE (RC) SIGNAL PULSE 
A particular pulse spectrum which has desirable spectral 

properties and has been widely used in practice [1] – [5] is 

the raised cosine spectrum and its frequency response is 

described below as: 
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where k = 0.5T, τ = β/T, a = (1 – β)/2T, b = (1 + β)/2T and  

τ = b – a respectively. Now, argument of cosine can also be 

written as, 
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Now, raised cosine spectrum, Xrc(f) can also be defined as 
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We’ll differentiate the above spectrum of raised cosine pulse 

twice in order to express it in the desired form. Thus, 
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In order to represent the above expression in the desirable 

form, we must see the simple addition of two rectangular 

pulses, each centered at the origin and with widths equal to 

2a and 2b respectively. 
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With this logic, the double derivative of raised cosine 

spectrum can thus be written in desirable form as, 
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The above relation in frequency domain can easily be 

transformed into time domain using differentiation, linearity 

properties of Fourier transform and the relation given in     

eq. (1) as 
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Substituting the value of y(t) in eq. (3) and performing some 

manipulation and simplification, we can find the desired 

time domain expression of raised cosine pulse as 
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 Special Cases 

 

Two cases are of interest, one is for β = 0 and the other is for  

β = 1. When β = 0, then τ = β/T = 0 and the pulse in time 

domain from eq.(4) simply reduces to xrc(t) = sinc(t/T) which 

corresponds to the spectrum Xrc(f) = 2k, for 0 ≤ |f| ≤ 1/2T in 

frequency domain. And when β = 1, then τ = 1/T and the 

product of sinc and cos functions simply reduces to, 
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5 COMPUTATION OF TIME DOMAIN EXPRESSION 
OF SQUARE ROOT RAISED COSINE (SRRC) 
SIGNAL PULSE 

The frequency response of this pulse is defined as [4]; 
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Making use of the identity, cos(2θ) = 2cos
2
(θ) – 1 and after 

taking the square root of the amplitude of the pulse, we can 

write it in the following form as 
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We’ll apply here the definition of inverse Fourier transform 

to find out the corresponding pulse in time domain. First, we 

see that root raised cosine pulse spectrum is a real and even 

function of frequency, f. It means that its corresponding 

pulse in time domain will also be a real and even function of 

time, t when inverse transformed in time domain. Using 

inverse definition of Fourier transform, we have 
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Special Cases 
Again here, two cases are of interest, one is for β = 1 and the 

other is for β = 0. When β = 1, then τ = β/T = 1/T, a = 0 and 

b = 1/T . The 2
nd

 term in eq. (5) vanishes and the 

corresponding pulse in time domain can easily be obtained. 

Similarly when β = 0, then τ = 0 and a = b = 1/2T and the 

pulse in time domain simply reduces to sinc function, i.e.,  

xsrrc(t) = sqrt(T) x sinc(t/T) which corresponds to the 
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spectrum Xsrrc(f) = sqrt(2k), for 0 ≤ |f| ≤ 1/2T in frequency 

domain.  

6 PLOTTING OF TIME DOMAIN EXPRESSIONS OF 
SIGNAL PULSES 

In this section, we sketch the time domain expressions of 

band limited signal pulses described in eqs. (1) – (5) for 

different values of τ and excess bandwidth parameter, β. 

Figure 1 (a) and (b) shows the variation of rectangular and 

triangular signal pulses for different values of τ and the 

variation of their corresponding time domain expressions for 

these values of τ. The phenomenon of compression / 

expansion in frequency domain is clearly visible in the 

sketches of these time domain expressions.  

 
(a) Sktech of rectangular pulse & its closed form for different T 

 
(b) Sktech of Triangular pulse & its closed form for different T 

Figure 1, a) and b): Variation of Rectangular and Triangular pulses for 

different values of τ in frequency and time domains.  

Moreover, the rate of decay of closed forms is t and t
2
 and 

both functions in time domain are non-causal which require 

a time delay of significant length to be able to become 

physically realizable.  

Figure 2 (a) and (b) shows the variation of raised cosine and 

its square root signal pulses for different values of excess 

bandwidth parameter, β and the variation of their 

corresponding time domain expressions for these values of 

β. The variation of raised cosine and its square root pulses in 

frequency domain is clearly visible in the sketches of these 

time domain expressions.  

 

(a) Sketch of Raised cosine pulse & its closed form for different β 

 

(b) Sketch of Raised cosine pulse & its closed form for different β  

Figure 2, a) and b): Variation of Rectangular and Triangular pulses for 

different values of τ in frequency and time domains. 

 

Figure (2) a) and b) shows clearly the variation of closed 

forms with respect to the excess bandwidth parameter, β. In 

comparison to figure 1, the rate of decay of these functions 

in time domain is (1/t
3
) instead of (1/t) or (1/t

2
). However, 

like figure 1, a long time delay is required in order to make 
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both functions realizable. Moreover, the bandwidth of the 

functions in figure 2 depends upon the parameter, β which 

was not the case in figure 1.   

7 CONCULUSIONS 
 

In this paper, we derived closed forms or time domain 

expressions of four band limited signal pulses such as 

rectangular, triangular, raised cosine and square root raised 

cosine. Although closed forms for rectangular and triangular 

pulses have been computed in many books on Signals and 

Systems, however, we used a different approach here in 

obtaining the closed form expressions of these two pulses. 

The closed forms of raised cosine and square root raised 

cosine pulses which are extensively used in digital 

communications for zero ISI have been reported in many 

books on Digital Communications without their derivation. 

We used Fourier transform properties along with its tables in 

a sensible manner to compute the closed form expressions of 

these important pulses. Finally, we showed the variation of 

these pulses and their corresponding time domain 

expressions with respect to the parameters T and β in the 

form of sketches. 
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